A Novel Human Mutation in the SLC9A1 Gene Results in Abolition of Na+/H+ Exchanger Activity
نویسندگان
چکیده
The SLC9A1 gene, the Na+/H+ exchanger isoform 1 is the principal plasma membrane Na+/H+ exchanger of mammalian cells and functions by exchanging one intracellular proton for one extracellular sodium. The human protein is 815 amino acids in length. Five hundred N-terminal amino acids make up the transport domain of the protein and are believed to form 12 transmembrane segments. Recently, a genetic mutation of the Na+/H+ exchanger isoform 1, N266H, was discovered in a human patient through exome sequencing. We examined the effect of this mutation on expression, targeting and activity of the Na+/H+ exchanger. Mutant N266H protein was expressed in AP-1 cells, which lack their endogenous Na+/H+ exchanger protein. Targeting of the mutant protein to the cell surface was normal and expression levels were only slightly reduced relative to the wild type protein. However, the N266H mutant protein had no detectable Na+/H+ exchanger activity. A histidine residue at this location may disrupt the cation binding site or the pore of the Na+/H+ exchanger protein.
منابع مشابه
Stop Codon Polymorphisms in the Human SLC9A1 Gene Disrupt or Compromise Na+/H+ Exchanger Function
The NHE1 isoform of the mammalian Na+/H+ exchanger is a ubiquitous plasma membrane protein that regulates intracellular pH in mammalian cells by removing one intracellular proton in exchange for one extracellular sodium. Deletion of the NHE1 gene (SLC9A1) affects the growth and motor ability of mice and humans but mutations and polymorphisms of the gene are only beginning to be characterized. N...
متن کاملALK-mediated Na+/H+ exchanger-dependent intracellular alkalinization: does it matter for oncogenesis?
In this study we investigated the relevance of the oncogenic protein NPM-ALK in regulating cellular pH (pHi) through the modulation of Na+/H+ exchanger 1 (NHE1)-activity and the consequences of pHi pharmacological manipulation in cells expressing NPM-ALK.
متن کاملNa+ dependent acid-base transporters in the choroid plexus; insights from slc4 and slc9 gene deletion studies
The choroid plexus epithelium (CPE) is located in the ventricular system of the brain, where it secretes the majority of the cerebrospinal fluid (CSF) that fills the ventricular system and surrounds the central nervous system. The CPE is a highly vascularized single layer of cuboidal cells with an unsurpassed transepithelial water and solute transport rate. Several members of the slc4a family o...
متن کاملIdentification of a Novel Arylsulfatase B Gene Mutation in Three Unrelated Iranian Mucopolysaccharidosis Type-VI Patients with Different Phenotype Severity
Background: Mucopolysaccharidosis type-VI (MPS-VI), which is inherited as an autosomal recessive trait, results from the deficiency of N-acetylgalactosamine 4-sulfatase (arylsulfatase B) activity and the lysosomal accumulation of dermatan sulfate. In this study, ARSB mutation analysis was performed on three unrelated patients who were originally from the West Azerbaijan province of Iran. Method...
متن کاملFamily screening for a novel ATP7B gene mutation, c.2335T>G, in the South of Iran
Background Wilson disease (WD) is a rare autosomal recessive disorder, which leads to copper metabolism, due to mutations in ATP7B gene. The gene responsible for WD consists of 21 exons that span a genomic region of about 80 kb and encodes a copper transporting P-type ATPase (ATP7B), a protein consisting of 1465 amino acids. Identifying mutation in ATP7B gene is important to find carrier i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015